1. Trang chủ
  2. » Tất cả

Đề ôn thi thhpt môn toán lớp 12 (643)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,12 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim 2n + 1 3n + 2 A 1 2 B 2 3 C 0 D 3 2[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + Câu Tính giới hạn lim 3n + 2 A B x−3 Câu [1] Tính lim bằng? x→3 x + A B x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A B +∞ x2 − Câu Tính lim x→3 x − A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B Câu !Dãy số sau có giới !n hạn 0? n A B 3 √ √ 4n2 + − n + Câu Tính lim 2n − A +∞ B C D C +∞ D −∞ C −∞ D − C −3 D +∞ C −1 D −4 !n C e !n D − 3 D C D D C Câu Giá trị lim(2x2 − 3x + 1) x→1 A +∞ B x+1 4x + A B √ x2 + 3x + Câu 10 Tính giới hạn lim x→−∞ 4x − 1 A B Câu Tính lim x→+∞ C C − D √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vơ số q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 1] log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m < ∨ m > D m ≤ Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vơ nghiệm D Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m ≤ D m > A m < 4 4 Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số − xy Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 11 − 19 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 √ √ Câu 18 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ A m ≥ B ≤ m ≤ 4 Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e − C xy0 = −ey − D xy0 = ey + 2 Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A [3; 4) B (1; 2) C 2 Câu 21 Tính lim 2n2 − 3n6 + n4 A Câu 22 Tính lim A n+3 √ ab B C D B C D Câu 23 Phát biểu sau sai? A lim un = c (Với un = c số) C lim = với k > nk B lim √ = n D lim qn = với |q| > 12 + 22 + · · · + n2 n3 A B C D +∞ 3 + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = 1 C lim un = D Dãy số un khơng có giới hạn n → +∞ ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 24 [3-1133d] Tính lim Trang 2/5 Mã đề Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C un D +∞ Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 1 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B n−1 Câu 30 Tính lim n +2 A B C D ! C D C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 19 17 19 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a C D A Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a A B C a D 2 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 2a 8a a A B C D 9 9 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B D C a d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B C 4a D 3a [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab D √ A √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 A B C D 29 29 29 29 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ c a2 + b2 a b2 + c2 b a2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K B f (x) xác định K C f (x) liên tục K D f (x) có giá trị nhỏ K Câu 42 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B Z dx = x + C, C số D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Câu 43 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R B Câu 44 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 46 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) Trang 4/5 Mã đề B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 47 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx k f (x)dx = f B Z Z g(x)dx D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 49 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 50 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A A A A B C 11 A 13 B 15 B C 10 C 12 B 14 B 16 C C D 17 B 18 19 B 20 C 22 C 21 A 23 D 24 B B 25 C 26 27 C 28 D 29 A 30 D 31 A 32 C 34 C 33 D 35 B 36 B 37 B 38 B 39 A 40 41 C 42 43 C 44 45 49 B D 46 A B 47 C D 48 A B 50 C ... - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A A A A B C 11 A 13 B 15 B C 10 C 12 B 14 B 16 C C D 17 B 18 19 B 20 C 22 C 21 A 23 D 24 B...Câu 14 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 15 [122 4d] Tìm tham số thực m để phương trình log23 x +... C Pmin = D Pmin = 21 9 √ √ Câu 18 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ A m ≥ B ≤ m ≤ 4 Câu 19 [3 -122 17d] Cho hàm số y = ln Trong khẳng

Ngày đăng: 10/03/2023, 23:01

w