Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a C lim f (x) = f (a) x→a D f (x) có giới hạn hữu hạn x → a x→a 2−n Câu Giá trị giới hạn lim n+1 A −1 B C D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ Câu Tính lim x→+∞ x−2 x+3 A Câu Tính lim x→2 A x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) C D C D −3 C D C +∞ D B C D B C D −∞ B − x+2 bằng? x B Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A Câu Tính lim A +∞ x→1 x3 − x−1 Câu 10 Phát biểu sau sai? A lim un = c (un = c số) C lim = n = nk D lim qn = (|q| > 1) B lim log(mx) = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m > C m < D m < ∨ m = √ Câu 12 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 63 C 64 D 62 − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + y Câu 11 [1226d] Tìm tham số thực m để phương trình Trang 1/5 Mã đề √ √ √ 11 − 19 11 − 11 + 19 A Pmin = B Pmin = C Pmin = 9 Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Pmin √ 18 11 − 29 = 21 D Vô nghiệm Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 ;3 C 2; D [3; 4) A (1; 2) B 2 √ ab Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) Câu 17 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 18 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + √ √ Câu 19 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D m ≥ 4 Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D 2 Câu 21 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un D Nếu lim un = a > lim = lim = +∞ un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D ! 1 + + ··· + Câu 23 Tính lim 1.2 2.3 n(n + 1) A B C D ! 1 Câu 24 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 Câu 25 Dãy số sau có giới hạn khác 0? n+1 sin n B C √ D A n n n n 7n2 − 2n3 + Câu 26 Tính lim 3n + 2n2 + A - B C D Trang 2/5 Mã đề Câu 27 Tính lim n+3 A B Câu 28 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) C D B lim qn = với |q| > D lim = với k > nk + + ··· + n Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un giới hạn n → +∞ D lim un = n−1 Câu 30 Tính lim n +2 A B C D Câu 29 [3-1132d] Cho dãy số (un ) với un = [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 17 19 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C D a A 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C D 4a Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Trang 3/5 Mã đề √ √ a a B a C D Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 8a 2a A B C D 9 9 √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 3a 58 a 38 A B C D 29 29 29 29 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên √ A 2a √ hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (I) C Cả hai câu sai D Chỉ có (II) Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) C dx = log |u(x)| + C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 43 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 45 Z Các khẳng định Z sau sai? f (x)dx, k số B f (x)dx = F(x) +C ⇒ !0 Z Z Z C f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = f (x) A k f (x)dx = k Z Câu 46 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K Z f (u)dx = F(u) +C B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Trang 4/5 Mã đề Câu 47 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (II) D Chỉ có (I) Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C B A A B A B B 11 D 10 D 12 D 13 B 14 15 B 16 A 17 B 18 A 19 C D 21 20 D 22 D 23 B 24 25 B 26 A 27 29 D 28 C B 34 35 D C B 36 A 37 C 38 39 C 40 41 A 42 43 D 32 33 A D C D C 44 A 45 B 46 47 B 48 A 49 C 30 B 31 C 50 C C D ... (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C B A A B A B B 11 D 10 D 12 D 13 B 14 15 B 16 A 17 B 18 A 19 C D 21 20 D 22 D 23 B 24... C xy0 = −ey + D xy0 = ey + √ √ Câu 19 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D m ≥ 4 Câu 20 [122 12d] Số nghiệm phương trình x−3 x−2 −... 19 A Pmin = B Pmin = C Pmin = 9 Câu 14 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C D Pmin √ 18 11 − 29 = 21 D Vô nghiệm Câu 15 [122 20d-2mh202047] Xét số thực dương a, b,