Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) − n2 bằng? Câu [1] Tính lim 2n + 1 A − B C x2 − 12x + 35 25 − 5x B Câu Tính lim x→5 A +∞ x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) C −∞ D 2 D − Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = x→+∞ g(x) b C lim [ f (x) + g(x)] = a + b x→+∞ Câu Tính lim x→+∞ x−2 x+3 A −3 B x+2 bằng? x→2 x A B x+1 Câu Tính lim x→−∞ 6x − 1 A B B lim [ f (x) − g(x)] = a − b x→+∞ D lim [ f (x)g(x)] = ab x→+∞ C − D C D D Câu Tính lim Câu Tính lim x→1 A x3 − x−1 B −∞ 2n − + 3n + A −∞ B √ √ 4n2 + − n + Câu 10 Tính lim 2n − A +∞ B Câu Tính lim 2n2 C C D +∞ C +∞ D C D 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e − C xy0 = −ey + D xy0 = ey − Câu 11 [3-12217d] Cho hàm số y = ln A xy0 = ey + Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Trang 1/5 Mã đề log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x x ln 10 2x3 ln 10 √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 64 D 62 √ √ Câu 15 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B ≤ m ≤ C ≤ m ≤ D m ≥ A < m ≤ 4 √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 B ;3 C (1; 2) D [3; 4) A 2; 2 2 Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m < D m > 4 4 − xy Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m ≤ D m < Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B +∞ C D A 2 Câu 22 Tính lim n+3 A B C D Câu 23 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ Câu 24 Dãy số sau có giới hạn 0? − 2n n2 − A un = B u = n 5n + n2 5n − 3n2 2n2 − Câu 25 Tính lim 3n + n4 A B C un = C n2 − 3n n2 D un = n2 + n + (n + 1)2 D Trang 2/5 Mã đề Câu 26 Dãy số sau có giới hạn khác 0? sin n B A n n ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B 12 + 22 + · · · + n2 Câu 28 [3-1133d] Tính lim n3 A B 3 Câu 29 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) Câu 30 Tính lim A cos n + sin n n2 + B −∞ n+1 n C √ n D C D C D +∞ B lim √ = n D lim k = với k > n C D +∞ Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A Câu 32 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a 8a a A B C D 9 9 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 abc b2 + c2 b a2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 3a , hình chiếu vng Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a Khoảng cách từ O đến (S BC) Trang 3/5 Mã đề √ √ √ √ a 57 a 57 2a 57 A B C a 57 D 19 17 19 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D Câu 41 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 42 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) có giá trị lớn K D f (x) liên tục K Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) D Cả hai Câu 46 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau Trang 4/5 Mã đề (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (II) D (I) (III) Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B Z dx = x + C, C số D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Chỉ có (II) D Cả hai câu Câu 50 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A B A B A B D 10 11 D 12 A 13 C 14 15 C 16 17 B 18 A 19 B 20 21 C 23 D 28 B D D B 30 B D C 32 D 34 D 35 A 36 37 A 38 39 D 40 41 D 42 C B C B 44 B 45 C 46 47 C 48 49 B 26 33 43 D 24 A 29 A 31 D 22 A 25 A 27 C 50 D D C B D ... g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A B A B A B D 10 11 D 12 A 13 C 14 15 C 16 17 B 18 A 19 B 20 21 C 23 D 28 B D D B 30... Xét mệnh đề sau Trang 4/5 Mã đề (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I)... (1; 2) D [3; 4) A 2; 2 2 Câu 17 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m < D m > 4 4 − xy Câu 18 [122 10d] Xét số thực dương x, y thỏa