Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A 1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin 2x C − sin 2x x2 − Câu Tính lim x→3 x − A −3 B +∞ C 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B C −1 x −1 Câu Tính lim x→1 x − A B −∞ C +∞ 1−n Câu [1] Tính lim bằng? 2n + 1 A B C x−3 bằng? Câu [1] Tính lim x→3 x + A B −∞ C D −1 + sin x cos x D D D D − D +∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = A lim [ f (x)g(x)] = ab B lim x→+∞ x→+∞ g(x) b C lim [ f (x) + g(x)] = a + b D lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ 2n + Câu Tính giới hạn lim 3n + 2 A B C D 2x + Câu Tính giới hạn lim x→+∞ x + 1 A −1 B C D √ √ 4n2 + − n + Câu 10 Tính lim 2n − 3 A B C +∞ D 2 Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vơ số D q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) Câu 15 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số √ √ − 3m + = có nghiệm C < m ≤ D ≤ m ≤ 4 Câu 18 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D log 2x Câu 19 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x 2x ln 10 2x ln 10 x ln 10 Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 17 [12215d] Tìm m để phương trình x+ B m ≥ A ≤ m ≤ 1−x2 Câu 21 Dãy số sau có giới hạn khác 0? 1 B A √ n n 7n2 − 2n3 + Câu 22 Tính lim 3n + 2n2 + A B Câu 23 Dãy số sau có giới hạn 0? n2 − n2 + n + A un = B u = n 5n − 3n2 (n + 1)2 Câu 24 Tính lim A Câu 25 Tính lim A n−1 n2 + n+3 − 4.2 x+ C 1−x2 sin n n B C B C n+1 n D - C C un = D − 2n 5n + n2 D un = n2 − 3n n2 D D un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C D +∞ Câu 27 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) B lim √ = n D lim k = với k > n Trang 2/5 Mã đề Câu 28 [3-1132d] Cho dãy số (un ) với un = A lim un = 1 C lim un = + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un giới hạn n → +∞ D lim un = Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = ! un = −∞ C Nếu lim un = a < lim = > với n lim v n ! un D Nếu lim un = a > lim = lim = +∞ Câu 30 Tính lim A 2n2 − 3n6 + n4 B C D Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 5a 2a B C D A 9 9 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C D a 2 Câu 35 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A a B 2a C D Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A 2 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ √ BC) √ a 57 2a 57 a 57 A B a 57 D C 19 17 19 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Cả hai sai D Chỉ có (II) Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Chỉ có (I) D Cả hai câu Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 44 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A B Z Z dx = ln |x| + C, C số x Câu 45 đề sau Z [1233d-2] Mệnh Z Z sai? C [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = f (x)dx + 0dx = C, C số xα dx = xα+1 + C, C số α+1 g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z D D Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) xác định K Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (II) sai C Khơng có câu D Câu (I) sai sai Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề D (I) (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A D B B 15 A B 10 A 11 D 13 C C 12 C 14 C 16 A B 18 A 17 A 19 D 20 D 21 D 22 D 23 24 A C D 25 27 A 29 31 D 28 C D 32 B 34 D 39 A 41 D C 45 C D 36 C 37 43 C 30 A 33 A 35 26 D 38 B 40 B 42 D 44 D 46 A 47 C 48 49 C 50 B D ... Mã đề Câu 28 [3-1132d] Cho dãy số (un ) với un = A lim un = 1 C lim un = + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 29 Trong mệnh đề đây, mệnh đề. .. ba mệnh đề D (I) (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A D B B 15 A B 10 A 11 D 13 C C 12 C 14 C 16 A B 18 A 17 A 19 D 20... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề D (I) (II)