Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→5 x2 − 12x + 35 25 − 5x A +∞ B − 2 5 C −∞ D[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→5 x2 − 12x + 35 25 − 5x B − 2n + Câu Tìm giới hạn lim n+1 A B x+1 Câu Tính lim x→−∞ 6x − 1 B A x+1 Câu Tính lim x→+∞ 4x + A +∞ A B D C D C D D 3 C Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm √ √ 4n2 + − n + Câu Tính lim 2n − A C −∞ B C +∞ D 2−n n+1 B C −1 D 2 C − D −3 C D Câu Giá trị giới hạn lim A Câu Tính lim x→+∞ x−2 x+3 A B Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B −1 Câu 10 Giá trị lim(2x2 − 3x + 1) x→1 C +∞ D log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m < ∨ m > C m ≤ D m < ∨ m = A B Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề log 2x x2 − ln 2x − log 2x B y0 = C y0 = x ln 10 x3 Câu 13 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x 2x3 ln 10 D y0 = 2x3 ln 10 Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 3) C (1; 3; 2) D (2; 4; 4) √ Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A 2; B (1; 2) C [3; 4) D ;3 2 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = −ey − D xy0 = ey + Câu 16 [3-12217d] Cho hàm số y = ln A xy0 = ey − Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 13 D 2020 Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C Câu 19 [12213d] Có giá trị nguyên m để phương trình nhất? A B C D 3|x−1| = 3m − có nghiệm D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 18 11 − 29 C Pmin = D Pmin = 21 Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 − 19 A Pmin = B Pmin √ 11 + 19 = 2n2 − Câu 21 Tính lim 3n + n4 A B C 1 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D ! D Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A B +∞ C C D D Trang 2/5 Mã đề 1 + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 26 Dãy số sau có giới hạn 0? n2 − 3n − 2n B u = A un = n 5n + n2 n2 n2 + n + D un = (n + 1)2 ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 7n − 2n + Câu 29 Tính lim 3n + 2n2 + B C D A - 3 Câu 30 Tính lim n+3 A B C D C un = n2 − 5n − 3n2 Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D Trang 3/5 Mã đề Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 a b2 + c2 c a2 + b2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 19 19 17 Câu 39 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C A 2a D √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 3a 38 a 38 B C D A 29 29 29 29 Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Trang 4/5 Mã đề Câu 45 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 46 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C (II) (III) D Cả ba mệnh đề Câu 47 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 48 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 49 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 50 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx - - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B D 11 13 B D C 21 D 10 B 12 B 18 C 20 C 22 A B 24 25 A C 26 A 27 C 28 29 A 31 B 16 A 17 A 23 14 A 15 19 C A C D B D B 33 A 30 D 32 D 34 D 35 C B C 36 37 C 38 A 39 C 40 A 41 B 42 C 43 B 44 C 45 B 46 47 B 48 C 50 C 49 A B ... a a B a C D A d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39... + 1, ∀x ∈ R f (x)dx = g0 (x)dx - - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B D 11 13 B D C 21 D 10 B 12 B 18 C 20 C 22 A B 24 25 A C 26