Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim 2n + 1 3n + 2 A 2 3 B 1 2 C 0 D 3 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + Câu Tính giới hạn lim 3n + 2 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B A 2−n Câu Giá trị giới hạn lim n+1 A B 2n + Câu Tìm giới hạn lim n+1 A B 3 x −1 Câu Tính lim x→1 x − A −∞ B 2n − Câu Tính lim 2n + 3n + A +∞ B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B 2 Câu Phát biểu sau sai? A lim qn = (|q| > 1) C lim un = c (un = c số) √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B 2 x2 − Câu 10 Tính lim x→3 x − A +∞ B C D C − D C −1 D C D C D +∞ C D −∞ C D −1 = n D lim k = n B lim C +∞ D C D −3 Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≤ C m < D m ≥ Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Câu 13 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Trang 1/5 Mã đề √ √ Câu 14 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B m ≥ C < m ≤ D ≤ m ≤ A ≤ m ≤ 4 Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (2; 4; 3) D (1; 3; 2) 2 Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m < C m > D m ≥ 4 4 x Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 13 D 2020 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = ey + D xy0 = −ey − Câu 18 [3-12217d] Cho hàm số y = ln A xy0 = ey − Câu 19 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 21 Tính lim n+3 A B C D un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 24 Dãy số sau có giới hạn khác 0? n+1 B A n n C √ n D sin n n Câu 25 Phát biểu sau sai? A lim qn = với |q| > 1 C lim √ = n n−1 Câu 26 Tính lim n +2 A B 1 = với k > nk D lim un = c (Với un = c số) B lim C D Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = ! un D Nếu lim un = a < lim = > với n lim = −∞ Trang 2/5 Mã đề Câu 28 Tính lim A +∞ cos n + sin n n2 + B Câu 29 Dãy số sau có giới hạn 0? n2 − n2 − 3n B u = A un = n n2 5n − 3n2 C −∞ C un = D 1 − 2n 5n + n2 D un = n2 + n + (n + 1)2 Câu 30 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 17 19 19 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 a 38 3a 58 A B C D 29 29 29 29 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 19 17 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 Trang 3/5 Mã đề d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 4a A 2a B 3a C Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C a D A B 2a Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Khơng có câu C Câu (III) sai D Câu (I) sai sai Câu 42 Hàm số f có nguyên hàm K A f (x) xác định K B f (x) liên tục K C f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 43 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 44 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 45 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B dx = x + C, C số x Z Z xα+1 α C x dx = + C, C số D 0dx = C, C số α+1 Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Cả hai câu D Chỉ có (II) Trang 4/5 Mã đề Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) D Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C C C B B A B D 10 11 D 12 D 14 D 13 C 15 A 16 A 17 A 18 A 19 20 A C D 21 B 22 B 23 A 24 B 25 A 26 27 B 28 31 B 32 33 B 34 35 B 36 37 D 39 B D 30 C 29 C B D C 38 A 40 C D 41 B 42 43 B 44 C 46 C 45 47 C D B 48 A 49 A 50 B ... (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C C C B B A B D 10 11 D 12 D 14 D 13 C 15 A 16 A 17 A 18 A 19 20 A C D 21 B 22 B 23 A... = ey + D xy0 = −ey − Câu 18 [3 -122 17d] Cho hàm số y = ln A xy0 = ey − Câu 19 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 20 [122 19d-2mh202050] Có số nguyên...√ √ Câu 14 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B m ≥ C < m ≤ D ≤ m ≤ A ≤ m ≤ 4 Câu 15 [122 7d] Tìm ba số nguyên dương (a, b, c)