Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→+∞ x + 1 4x + 3 bằng A 3 B 1 3 C 1 4 D 1 Câ[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+1 x→+∞ 4x + 1 A B C x+1 Câu Tính lim x→−∞ 6x − 1 A B C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B + sin 2x C −1 + sin x cos x 2−n Câu Giá trị giới hạn lim n+1 A B −1 C Câu Tính lim Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B 2n − Câu Tính lim 2n + 3n + A B x−2 Câu Tính lim x→+∞ x + A − B −3 − n2 Câu [1] Tính lim bằng? 2n + 1 A B − x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B x −1 Câu 10 Tính lim x→1 x − A B D D D − sin 2x D C D C −∞ D +∞ C D C C D D +∞ D +∞ q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 2] C −∞ Câu 12 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (1; 3; 2) D (2; 4; 4) log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 2x ln 10 x x ln 10 Câu 14 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Trang 1/5 Mã đề Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 x x x Câu 19 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A Vô nghiệm B C D √ √ Câu 20 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm B < m ≤ C ≤ m ≤ D m ≥ A ≤ m ≤ 4 7n2 − 2n3 + Câu 21 Tính lim 3n + 2n2 + C D A B - 3 n−1 Câu 22 Tính lim n +2 A B C D ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) C D A B 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A B +∞ C D 3 2n2 − Câu 25 Tính lim 3n + n4 A B C D Câu 26 Phát biểu sau sai? A lim k = với k > B lim qn = với |q| > n C lim un = c (Với un = c số) D lim √ = n un Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D 2 Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B C ! 1 + ··· + Câu 29 [3-1131d] Tính lim + 1+2 + + ··· + n A B +∞ C 2 Câu 30 Dãy số sau có giới hạn khác 0? sin n n+1 B C √ A n n n D D D n d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 32 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a D a B a C [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ BC) √ √ Khoảng cách từ O đến (S √ a 57 2a 57 a 57 C D A a 57 B 19 17 19 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 abc b2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B D C a Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ D √ B √ C 2 2 a +b a +b a +b a2 + b2 3a Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Trang 3/5 Mã đề 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) B dx = log |u(x)| + C u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 42 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 43 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) xác định K Câu 44 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu sai C Chỉ có (I) D Cả hai câu Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai Câu 46 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C dx = ln |x| + C, C số x B Z D D Chỉ có (I) 0dx = C, C số xα dx = xα+1 + C, C số α+1 Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Trang 4/5 Mã đề Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai C Câu (III) sai D Câu (I) sai sai Câu 50 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C A B B B A D B B 10 B 11 B 12 B 13 14 D 15 C 16 17 C 18 19 C 20 A 21 B 22 23 D 25 C B B 24 A C 26 27 D 28 A 29 D 30 A 31 D 32 33 D B B 34 B D 35 D C 36 37 C 38 D 39 C 40 D 41 B 42 43 A 45 47 B D B 44 D 46 D 48 A 49 A 50 C ... (3a + 2b + 1) = Giá trị a + 2b C D A B 2 x x x Câu 19 [122 11d] Số nghiệm phương trình 12. 3 + 3.15 − = 20 A Vô nghiệm B C D √ √ Câu 20 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m +... (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 17 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 18 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2...Câu 15 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 Câu 16 [122 19d-2mh202050] Có số nguyên x cho