Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào sau đây là sai? A lim 1 n = 0 B lim 1 nk[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phát biểu sau sai? A lim = n C lim qn = (|q| > 1) = nk D lim un = c (un = c số) B lim Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = A lim [ f (x) + g(x)] = a + b B lim x→+∞ x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b D lim [ f (x)g(x)] = ab x→+∞ x→+∞ x − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 − 2n bằng? Câu [1] Tính lim 3n + 1 A B − 3 2n + Câu Tính giới hạn lim 3n + 2 A B x−2 Câu Tính lim x→+∞ x + A B − 2n − Câu Tính lim 2n + 3n + A +∞ B x −9 Câu Tính lim x→3 x − A B −3 x+2 Câu Tính lim bằng? x→2 x A B x+1 Câu 10 Tính lim x→−∞ 6x − 1 A B 2 C D C D C D C −3 D C −∞ D C +∞ D C D 1 D C √ √ Câu 11 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A < m ≤ B m ≥ C ≤ m ≤ D ≤ m ≤ 4 Câu 12 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số 2 Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 19 11 + 19 C Pmin = D Pmin = 9 Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 − A Pmin = B Pmin = 21 Câu 15 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vơ nghiệm Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≤ C m ≥ D m < Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m > C m < D m ≥ 4 4 √ Câu 20 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Câu 21 Tính lim n+3 A B C D un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C −∞ D +∞ 2 + + ··· + n Câu 23 [3-1133d] Tính lim n3 B C D +∞ A 3 2n2 − Câu 24 Tính lim 3n + n4 A B C D ! 1 + + ··· + Câu 25 Tính lim 1.2 2.3 n(n + 1) A B C D ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 cos n + sin n Câu 27 Tính lim n2 + A B C −∞ D +∞ Trang 2/5 Mã đề Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un = C Nếu lim un = a , lim = ±∞ lim ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 29 Dãy số sau có giới hạn khác 0? sin n A √ B n n Câu 30 [3-1132d] Cho dãy số (un ) với un = C n+1 n D n + + ··· + n Mệnh đề sau đúng? n2 + B lim un = A lim un = C lim un = D Dãy số un giới hạn n → +∞ Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 13 16 Câu 33 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a C a B D 2a 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 √ Câu 35 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 a 38 3a 38 A B C D 29 29 29 29 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 B C D A a 57 17 19 19 0 0 Câu 37.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D Trang 3/5 Mã đề Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 8a 5a B C D A 9 9 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 19 19 17 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Chỉ có (II) D Cả hai câu sai Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 43 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 44 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 45 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx k f (x)dx = f B Z D f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 46 Xét hai khẳng đinh sau Trang 4/5 Mã đề (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai D Cả hai sai Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Câu 48 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị nhỏ K Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C 0dx = C, C số D B Z D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B B B B D D D A 10 A 11 C 12 B 13 C 14 B 16 B 15 17 D B 19 A 20 A D 21 23 22 A 24 B D 25 27 C 18 B 26 B 28 C B 29 C 30 C 31 C 32 C 33 C 34 C 35 B 37 A 39 41 D 36 D 38 D 40 B 42 43 C 44 A 45 C 46 47 C 48 A 49 C 50 C B B B ... Câu 16 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 17 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 18 [122 5d]... 19 11 + 19 C Pmin = D Pmin = 9 Câu 14 [122 10d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 − A Pmin = B Pmin = 21 Câu 15 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1... x≥1 A m > B m ≤ C m ≥ D m < Câu 19 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m > C m < D m ≥ 4 4 √ Câu 20 [122 8d] Cho phương trình (2 log3 x −