1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (140)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,71 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A − 1 4 B[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B A − √ √ 4n2 + − n + Câu Tính lim 2n − A B Câu Tính lim x→5 A +∞ Câu Tính lim A +∞ x→3 x2 − 12x + 35 25 − 5x B −∞ x2 − x−3 B − 2n bằng? Câu [1] Tính lim 3n + A − B 3 2n + Câu Tính giới hạn lim 3n + A B 2 x+1 Câu Tính lim x→+∞ 4x + A B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B 2n + Câu Tìm giới hạn lim n+1 A B x+1 Câu 10 Tính lim x→−∞ 6x − A B C D C +∞ D 2 C − D C −3 D C D C D C D C −1 D C D C log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x A y0 = B y0 = C y0 = x 2x ln 10 x ln 10 D D y0 = − ln 2x 2x3 ln 10 Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 2020 D log2 13 log(mx) = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m ≤ D m < ∨ m > √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 Câu 15 [1226d] Tìm tham số thực m để phương trình Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D − xy Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 19 11 − B Pmin = C Pmin = D Pmin = A Pmin = 21 Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m < D m > 4 4 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) Câu 21 Dãy số sau có giới hạn khác 0? sin n A B √ n n C n D n+1 n Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B cos n + sin n n2 + B −∞ 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A B 2n2 − Câu 25 Tính lim 3n + n4 A B Câu 23 Tính lim A n−1 Câu 26 Tính lim n +2 A B C D C +∞ D C +∞ D C D C D Trang 2/5 Mã đề 7n2 − 2n3 + 3n3 + 2n2 + A B - Câu 28 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) Câu 27 Tính lim C D = với k > nk D lim qn = với |q| > 1 + + ··· + n Câu 29 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 30 Tính lim n+3 A B C D B lim Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B C a A D a [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 17 19 19 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ a b2 + c2 b a2 + c2 c a2 + b2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 3a D 2a Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a 8a a A B C D 9 9 Trang 3/5 Mã đề Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C a D A 2 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a B C 2a D a A Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) D Cả hai Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (I) C Cả hai câu sai D Chỉ có (II) Câu 46 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Trang 4/5 Mã đề u0 (x) dx = log |u(x)| + C u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Z B Câu 47 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) liên tục K D f (x) có giá trị nhỏ K Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 49 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx Câu 50 Z Các khẳng định Z sau sai? D Z f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , !0 f (x)dx = f (x) f (x)dx, k số B Z Z Z Z C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C A k f (x)dx = k - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D A D D A 10 C 11 C D 14 15 B 16 17 B 18 A 19 B 20 21 D 12 D 13 D B C 22 A 24 23 A 25 B 26 A 27 B 28 29 A B 32 C 35 A 36 A B C 38 39 A 40 A 41 A 42 A 43 D C 34 B D 30 33 A 37 C 31 B 44 C 45 A 46 47 B 48 49 B 50 C B D C ...Câu 13 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 14 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2... [122 6d] Tìm tham số thực m để phương trình Câu 17 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D − xy Câu 18 [122 10d] Xét số thực dương x, y thỏa mãn log3 = 3xy... Câu 16 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 Câu 15 [122 6d] Tìm

Ngày đăng: 10/03/2023, 19:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w