Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A −1 B 2 C 0 D 1 Câu 2 Tính lim x→2 x + 2 x bằng? A 2 B 0 C 3 D 1[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A −1 B x+2 bằng? Câu Tính lim x→2 x A B C D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 C D A B − 4 Câu Phát biểu sau sai? 1 A lim k = B lim = n n C lim un = c (un = c số) D lim qn = (|q| > 1) Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin 2x C + sin 2x x+1 Câu Tính lim x→−∞ 6x − 1 A B C 2 Câu Giá trị lim (3x − 2x + 1) x→1 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ D D +∞ C C D −1 + sin x cos x D Câu 10 Dãy số !n có giới hạn bằng3 0? −2 n − 3n A un = B un = n+1 !n C un = n − 4n D un = q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ √ Câu 13 [12215d] Tìm m để phương trình x+ A < m ≤ B m ≥ 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C Vô số D 62 Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C 13 D log2 13 log 2x x2 − log 2x B y0 = C y0 = x 2x ln 10 Câu 17 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x x3 ln 10 D y0 = − ln 2x 2x3 ln 10 Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A [3; 4) B (1; 2) C 2 √ ab Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > Câu 20 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C Câu 21 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B - D D ! 3n + 2 + a − 4a = Tổng phần tử Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 23 Tính lim A Câu 24 Tính lim A Câu 25 Tính lim A Câu 26 Tính lim A C 2n2 − 3n6 + n4 n−1 n2 + n+3 B C D B C D C D C D B 1 + + ··· + 1.2 2.3 n(n + 1) B ! Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C un D −∞ Trang 2/5 Mã đề Câu 28 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n Câu 29 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n A un = B un = (n + 1) 5n + n2 = với k > nk D lim qn = với |q| > B lim C un = n2 − 3n n2 D un = n2 − 5n − 3n2 Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = D Nếu lim un = a , lim = ±∞ lim Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B C D a A a 3 d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C D A √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ BC) √ √ Khoảng cách từ A đến (S √ a 57 2a 57 a 57 C D A a 57 B 19 17 19 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 3a C 2a D 4a Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C D a A 2 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ c a2 + b2 a b2 + c2 b a2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (I) (II) D (II) (III) Câu 42 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = ln |x| + C, C số α+1 Z Z x C dx = x + C, C số D 0dx = C, C số Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (III) sai sai Câu 44 Xét hai khẳng đinh sau D Câu (II) sai (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai D Cả hai sai Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] Trang 4/5 Mã đề (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị lớn K Câu 49 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) B Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C B B D D A D 10 A 11 D 12 C 13 D 15 17 A 19 C 14 D 16 D 18 C 20 C C 21 B 22 23 B 24 25 D 27 C B 26 A 28 C D 29 B 30 A 31 B 32 D 33 A 34 D 35 A 36 C 38 C 37 B 39 C 40 A 41 C 42 A 43 B 44 45 A 47 49 C D 46 C 48 C 50 A B ... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (I) (II) D (II)... Chỉ có (I) D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C B B D D A D 10 A 11 D 12 C 13 D 15 17 A 19 C 14 D 16 D 18 C 20... nk D lim qn = với |q| > B lim C un = n2 − 3n n2 D un = n2 − 5n − 3n2 Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim