1. Trang chủ
  2. » Tất cả

Đề môn toán ôn tập thpt qg (33)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,03 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim √ 4n2 + 1 − √ n + 2 2n − 3 bằng A 1 B 3 2 C +∞ D 2 Câu 2 Tìm giới hạn lim 2n + 1 n + 1 A 0 B 1 C 2[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu A Câu A √ √ 4n2 + − n + Tính lim 2n − 3 B 2n + Tìm giới hạn lim n+1 B C +∞ D C D D 1−n bằng? Câu [1] Tính lim 2n + 1 A B − C Câu Giá trị lim(2x2 − 3x + 1) x→1 A C +∞ B Câu Phát biểu sau sai? A lim qn = (|q| > 1) C lim k = n Câu Tính lim x→3 A x2 − x−3 B +∞ B lim un = c (un = c số) D lim = n C x+1 x→−∞ 6x − 1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − A B D D −3 Câu Tính lim Câu Dãy số! có giới hạn 0?! n n −2 A un = B un = Câu 10 Tính lim x→+∞ x−2 x+3 A B −3 C D 1 C − D C un = n2 − 4n D un = C − D n3 − 3n n+1 Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 4) D (2; 4; 6) − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 18 11 − 29 C Pmin = D Pmin = 21 Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 − 19 A Pmin = B Pmin √ 11 + 19 = Trang 1/5 Mã đề 1 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m > D m ≤ Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≤ C m > D m ≥ A m < 4 4 Câu 17 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 18 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e + C xy0 = ey − D xy0 = −ey − Câu 19 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C √ √ D Câu 20 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A m ≥ B < m ≤ C ≤ m ≤ D ≤ m ≤ 4 2n2 − Câu 21 Tính lim 3n + n4 A B C D cos n + sin n Câu 22 Tính lim n2 + A −∞ B C +∞ D ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D n−1 Câu 24 Tính lim n +2 A B C D Câu 25 Tính lim n+3 A B C D 2 Câu 26 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) = với k > nk D lim √ = n B lim Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = ! un = −∞ C Nếu lim un = a < lim = > với n lim ! un = +∞ D Nếu lim un = a > lim = lim Câu 28 Tính lim A - 7n2 − 2n3 + 3n3 + 2n2 + B C D Câu 29 Dãy số sau có giới hạn khác 0? 1 A B √ n n C n+1 n D Câu 30 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 C un = n2 − 5n − 3n2 sin n n D un = n2 + n + (n + 1)2 Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C a D 2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a C B a D a A Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 2a 8a B C D A 9 9 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C 2a D Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 3a , hình chiếu vng Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai sai Câu 42 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K C Câu (I) sai D Câu (III) sai B f (x) có giá trị lớn K D f (x) liên tục K Câu 43 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 44 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Trang 4/5 Mã đề Z C Nếu Z D Nếu f (x)dx = Z g0 (x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z g(x)dx f (x) = g(x), ∀x ∈ R Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R B Câu 48 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B 0dx = C, C số A xα dx = α+1 Z Z C dx = ln |x| + C, C số D dx = x + C, C số x Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Chỉ có (I) D Cả hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D B A C B A C C 10 A 11 D 12 C 13 A 14 A 15 A 16 17 A 18 C 19 A 20 C 21 C 23 25 D C 27 29 D B 24 B 28 A C 30 A 32 D 38 D 40 41 A 42 43 A 44 A 45 47 D 36 A C 39 B 34 C 35 37 22 26 A 31 A 33 B 46 C D 48 A 49 A 50 A D C D D ... = c số) = với k > nk D lim √ = n B lim Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = ! un = −∞ C Nếu... Chỉ có (I) D Cả hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D B A C B A C C 10 A 11 D 12 C 13 A 14 A 15 A 16 17 A 18 C 19 A 20... g(x)dx f (x) , g(x), ∀x ∈ R Trang 4/5 Mã đề Z C Nếu Z D Nếu f (x)dx = Z g0 (x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z g(x)dx f (x) = g(x), ∀x ∈ R Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) −

Ngày đăng: 10/03/2023, 09:58

w