Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 1 B 3 C 0 D 2 Câu 2 [1] Tính lim 1 − n2 2n2 + 1 bằng? A 0 B − 1 2 C 1 3 D 1[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2n + Câu Tìm giới hạn lim n+1 A B C 1−n bằng? Câu [1] Tính lim 2n + 1 C A B − 2 Câu Cho f (x) = sin x − cos x − x Khi f (x) A + sin 2x B −1 + sin 2x C −1 + sin x cos x Câu Giá trị lim(2x2 − 3x + 1) x→1 A +∞ B x+2 Câu Tính lim bằng? x→2 x A B Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B − 2n bằng? Câu [1] Tính lim 3n + A B − Câu Dãy số! có giới hạn 0?! n n −2 A un = B un = 2x + Câu Tính giới hạn lim x→+∞ x + A −1 B Câu 10 Phát biểu sau sai? A lim un = c (un = c số) C lim = n D D D − sin 2x C D C D C D C C un = D n3 − 3n n+1 C D un = n2 − 4n D B lim qn = (|q| > 1) D lim k = n log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x ln 10 x 2x ln 10 2x ln 10 Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C log2 2020 D 2020 Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số √ Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A [3; 4) B ;3 C (1; 2) D 2; 2 Trang 1/5 Mã đề Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vơ nghiệm Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≤ C m > D m ≥ − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 20 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m < C m ≤ D m ≥ A m > 4 4 ! 3n + Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B C n−1 Câu 24 Tính lim n +2 A B C ! 1 + + ··· + Câu 25 Tính lim 1.2 2.3 n(n + 1) A B C Câu 26 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ D D - D D ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a , lim = ±∞ lim = Trang 2/5 Mã đề Câu 27 Tính lim n+3 A B Câu 28 Dãy số sau có giới hạn khác 0? sin n A √ B n n C C n D D n+1 n ! 1 Câu 29 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B +∞ C D A 2 Câu 30 Phát biểu sau sai? A lim un = c (Với un = c số) B lim k = với k > n n C lim q = với |q| > D lim √ = n [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a 2a a B C D A 9 9 d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C D 2a Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C D a A 0 0 Câu 35 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ a a 2a A B a C D √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 38 3a 58 3a A B C D 29 29 29 29 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C D 2a 2 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a Khoảng cách từ O đến (S BC) Trang 3/5 Mã đề √ √ √ √ a 57 2a 57 a 57 A B C D a 57 17 19 19 0 0 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Câu 41 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx Câu 42 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K ( f (x) − g(x))dx = B Z D ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx Z g(x)dx B f (x) xác định K D f (x) có giá trị lớn K Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Chỉ có (II) D Cả hai câu Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 45 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 46 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B 0dx = C, C số α+1 Z Z C dx = ln |x| + C, C số D dx = x + C, C số x Trang 4/5 Mã đề Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai C Câu (II) sai D Câu (III) sai sai Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B A B B A A B 10 C 11 A B 12 A 13 14 C 15 A B 16 D D 17 D 18 19 D 20 C 22 C 21 C 23 D 25 24 A 26 A C 27 D 28 D 29 C 30 31 C 32 B 33 C 34 B 35 C 36 C 38 C C 37 A 39 C 40 41 C 42 A 43 D C 44 A 46 B 47 A 48 B 49 A 50 B 45 B ... trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B A B B A A B 10 C 11 A B 12 A 13 14 C 15 A B 16 D D 17 D 18 19 D 20... Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Câu 41 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)g(x)dx = Z f (x)dx, k ∈ R,... Tính lim n +2 A B C ! 1 + + ··· + Câu 25 Tính lim 1.2 2.3 n(n + 1) A B C Câu 26 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞