Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A −3 B +∞ C 6 D 3 Câu 2 Tính lim 2n − 3 2n2 + 3n + 1 bằng A 0 B 1 C −∞ D +∞ Câu 3[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim x→3 A −3 x2 − x−3 B +∞ 2n − + 3n + A B x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B Câu Tính lim 2n2 Câu Dãy số! có giới hạn 0? n −2 B un = n2 − 4n A un = − 2n Câu [1] Tính lim bằng? 3n + 2 A − B 3 C D C −∞ D +∞ C D !n C un = D un = D C D C D C D +∞ C D +∞ D − C n3 − 3n n+1 Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 2n + Câu Tìm giới hạn lim n+1 A B Câu Giá trị lim(2x2 − 3x + 1) x→1 A B √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B 2 x − 12x + 35 Câu 10 Tính lim x→5 25 − 5x A −∞ B +∞ C Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A 3|x−1| = 3m − có nghiệm B C D log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < D m < ∨ m > Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vơ nghiệm Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m > D m < 4 4 Trang 1/5 Mã đề Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m ≥ C m > D m < Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 √ √ Câu 17 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm B < m ≤ C m ≥ D ≤ m ≤ A ≤ m ≤ 4 Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 4] D m ∈ [0; 2] √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B Vô số C 62 D 63 ! 1 + ··· + Câu 21 [3-1131d] Tính lim + 1+2 + + ··· + n D A +∞ B C 2 Câu 22 Phát biểu sau sai? A lim √ = B lim qn = với |q| > n C lim un = c (Với un = c số) D lim k = với k > n un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D 2 Câu 24 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = 12 + 22 + · · · + n2 n3 B Câu 25 [3-1133d] Tính lim A +∞ Câu 26 Tính lim A 2n2 − 3n6 + n4 B n−1 Câu 27 Tính lim n +2 A B 2 C D C D C D Trang 2/5 Mã đề Câu 28 Dãy số sau có giới hạn khác 0? n+1 B A n n C sin n n D √ n Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ 2 2 2 a +b a +b a +b a + b2 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a C D B Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a a 2a A B C D 9 9 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B a A C a D √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 58 3a 38 A B C D 29 29 29 29 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 abc b2 + c2 b a2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề 0 0 Câu 39.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 3a Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K B f (x) liên tục K C f (x) xác định K D f (x) có giá trị lớn K Câu 42 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Cả hai câu D Chỉ có (I) Câu 44 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Chỉ có (I) D Cả hai Câu 46 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Trang 4/5 Mã đề Câu 47 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx f (x)dx − Z g(x)dx D Câu 48 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C k f (x)dx = f B Z Z B f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C D Z f (x)g(x)dx = k f (x)dx = k Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C (I) (III) D Cả ba mệnh đề Câu 50 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Khơng có câu D Câu (II) sai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C A A A D C C C 10 C 11 C 12 A 13 C 14 B 16 B 17 A 18 B 19 A 20 15 21 B B 23 25 22 C 29 33 D C B D 39 B 30 B 32 B C 38 A 40 C B 43 47 28 36 37 45 D 34 A 35 A 41 C 26 C 31 B 24 B 27 C 42 D B 44 C 46 B D 49 A D B 48 C 50 C ... sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C A A A D C C C 10 C 11 C 12 A 13 C 14 B 16 B 17 A 18 B 19 A 20 15 21 B B 23 25 22 C 29... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C (I) (III) D Cả ba mệnh đề Câu... hai nguyên hàm hàm số f (x) F(x) − G(x) số Trang 4/5 Mã đề Câu 47 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f