Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Dãy số nào sau đây có giới hạn là 0? A ( 1 3 )n B ( − 5 3 )n C ( 4 e )n D ( 5 3 )n Câu 2 Tính lim x→5 x2 −[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu !Dãy số sau có giới !hạn 0? n n A B − 3 Câu Tính lim x→5 A +∞ !n C e !n D C −∞ D − B C D B C D −3 x2 − 12x + 35 25 − 5x B Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A Câu Tính lim x→+∞ A − x−2 x+3 x+1 x→−∞ 6x − A B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B −1 x+1 Câu Tính lim x→+∞ 4x + A B 3 4x + bằng? Câu [1] Tính lim x→−∞ x + A −1 B Câu Tính lim C D C D C D C −4 D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu 10 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = +∞ C lim f (x) = f (a) x→a x→a x→a x→a D lim+ f (x) = lim− f (x) = a x→a Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D log 2x x2 − ln 2x − log 2x B y0 = C y0 = x ln 10 x3 Câu 12 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x 2x3 ln 10 D y0 = 2x3 ln 10 Trang 1/5 Mã đề Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C 13 D log2 2020 Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < ∨ m > D m < Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C 62 D Vô số √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D + + ··· + n Mệnh đề sau đúng? Câu 22 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A lim un = B lim un = C lim un = D Dãy số un giới hạn n → +∞ ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 Câu 19 [12215d] Tìm m để phương trình x+ A < m ≤ B m ≥ Câu 24 Dãy số sau có giới hạn 0? − 2n n2 − A un = B un = 5n + n2 5n − 3n2 Câu 25 Tính lim A Câu 26 Tính lim A 1−x2 − 4.2 x+ 1−x2 n2 − 3n C un = n2 n2 + n + D un = (n + 1)2 C D C −∞ D 2n2 − 3n6 + n4 B cos n + sin n n2 + B +∞ Trang 2/5 Mã đề 12 + 22 + · · · + n2 Câu 27 [3-1133d] Tính lim n3 A B +∞ ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B 2 C D C D Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B n−1 Câu 30 Tính lim n +2 A B C C D D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ O đến (S√BC) √ 2a 57 a 57 a 57 C D A a 57 B 17 19 19 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 0 0 Câu 33.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C √ A √ B D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 3 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A C √ D √ B √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 3a C 2a D Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ A đến (S√BC) √ 2a 57 a 57 a 57 C D A a 57 B 17 19 19 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A 2 Câu 40 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a B C D A 9 9 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 43 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 45 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C B f (x) liên tục K D f (x) có giá trị lớn K Trang 4/5 Mã đề Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Câu (III) sai D Khơng có câu sai Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Cả hai sai C Chỉ có (I) D Chỉ có (II) Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D C B B C D B C 10 11 C 12 B 14 B B 13 A C 15 D 16 17 D 18 C 20 C 19 C 21 A 22 A 23 24 A C 25 A 26 A 27 A 28 A 29 A 30 31 D 33 C 32 C 34 A 36 35 A D 37 39 D D C 38 B 40 A 41 D 42 43 D 44 B 46 B 45 B 47 D 48 49 D 50 D D C ... sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D C B B C D B C 10 11 C 12 B 14 B B 13 A C 15 D 16 17 D 18 C 20 C 19 C 21 A 22 A 23 24... + y2 )? A Vô số B C D log(mx) Câu 16 [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < ∨ m > D m < Câu 17 [122 14d] Với giá trị m phương trình |x−2|... n2 n2 + n + D un = (n + 1)2 C D C −∞ D 2n2 − 3n6 + n4 B cos n + sin n n2 + B +∞ Trang 2/5 Mã đề 12 + 22 + · · · + n2 Câu 27 [3-1133d] Tính lim n3 A B +∞ ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3