1. Trang chủ
  2. » Tất cả

Ôn thi toán thptqg pdf (342)

6 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 112,87 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A 1 + 2 sin 2x B −1 + sin x cos x C −1 + 2 sin 2x D 1 −[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin x cos x C −1 + sin 2x D − sin 2x Câu Dãy !n số sau có giới !n hạn 0? B A − 3 !n C !n D e C −4 D −1 C −∞ D − Câu [1] Tính lim x→−∞ A Câu Tính lim x→5 A 4x + bằng? x+1 B x2 − 12x + 35 25 − 5x B +∞ x+1 x→−∞ 6x − 1 B A 2x + Câu Tính giới hạn lim x→+∞ x + A −1 B Câu Tính lim Câu Tính lim x→+∞ x−2 x+3 A B −3 Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B −1 C D C D C − D C D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab x→+∞ x→+∞ C lim [ f (x) − g(x)] = a − b D lim x→+∞ Câu 10 Giá trị giới hạn lim A B lim [ f (x) + g(x)] = a + b B x→+∞ 2−n n+1 C −1 f (x) a = g(x) b D Câu 11 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m > C m < D m ≥ 4 4 Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = −ey − C xy0 = ey + D xy0 = ey − Câu 13 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Trang 1/5 Mã đề Câu 14 [12213d] Có giá trị nguyên m để phương trình nhất? A B √ C √ 3|x−1| = 3m − có nghiệm D Câu 15 [12215d] Tìm m để phương trình x+ − 4.2 x+ − 3m + = có nghiệm B ≤ m ≤ C m ≥ D ≤ m ≤ A < m ≤ 4 log 2x Câu 16 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = x ln 10 2x ln 10 2x ln 10 x3 Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m ≤ D m < log(mx) = có nghiệm thực Câu 18 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m < ∨ m > C m < D m ≤ 1−x2 1−x2 Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 √ Câu 20 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 64 C 62 D 63 Câu 21 Dãy số sau có giới hạn 0? − 2n n2 − 3n n2 − n2 + n + A un = B u = C u = D u = n n n 5n + n2 n2 5n − 3n2 (n + 1)2 + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = 2 2n − Câu 23 Tính lim 3n + n4 A B C D cos n + sin n Câu 24 Tính lim n2 + A B C +∞ D −∞ n−1 Câu 25 Tính lim n +2 A B C D Câu 26 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) Câu 27 Tính lim n+3 A B B lim √ = n D lim k = với k > n C D Trang 2/5 Mã đề 7n2 − 2n3 + Câu 28 Tính lim 3n + 2n2 + A B - 3 ! 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D C D Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C un D +∞ Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ D √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 13 16 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A C B a D 3a , hình chiếu vng Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 B A a 57 C D 19 17 19 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C 2a D Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 abc b2 + c2 c a2 + b2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) Trang 3/5 Mã đề √ √ √ a B C a D a Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 √ A 2a Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Trang 4/5 Mã đề Câu 46 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 47 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C Z B f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C D Z k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Cả hai câu sai D Chỉ có (II) Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 50 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C B A C B B D D 10 11 A 12 13 D B 16 A 17 B 18 A 24 B D 27 C B B 30 31 B 32 33 B 34 35 B 36 D 37 B 28 B D C D 38 A C 41 A C 40 B 42 B 44 45 A 47 D 26 A 29 43 C 22 25 39 B 20 C 21 A 23 C 14 A 15 19 B D 46 B 48 B 50 49 A C D ... a a a B C D A d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39... K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C B A C B B D D 10 11 A 12 13 D B 16 A 17 B 18 A 24 B D 27 C B B 30 31 B 32 33 B 34 35 B 36

Ngày đăng: 07/03/2023, 10:00

w