Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A −3 B 3 C +∞ D 6 Câu 2 Phát biểu nào sau đây là sai? A lim qn = 0 (|q| > 1) B li[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x2 − Câu Tính lim x→3 x − A −3 C +∞ B D Câu Phát biểu sau sai? A lim qn = (|q| > 1) B lim un = c (un = c số) 1 D lim = C lim k = n n Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x) + g(x)] = a + b x→+∞ g(x) x→+∞ b C lim [ f (x)g(x)] = ab D lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ Câu Cho f (x) = sin x − cos x − x Khi f (x) A −1 + sin x cos x B + sin 2x C −1 + sin 2x 2x + Câu Tính giới hạn lim x→+∞ x + A −1 B C 2 D − sin 2x D − 2n Câu [1] Tính lim bằng? 3n + 1 2 B C D − A 3 1−n Câu [1] Tính lim bằng? 2n + 1 1 A − B C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a C lim f (x) = f (a) D f (x) có giới hạn hữu hạn x → a x→a 2n + Câu Tìm giới hạn lim n+1 A B C D 2n + Câu 10 Tính giới hạn lim 3n + A B C D 2 Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (2; 4; 3) D (1; 3; 2) Câu 12 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Trang 1/5 Mã đề Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D 1 − xy Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 18 11 − 29 11 − B Pmin = C Pmin = D Pmin = A Pmin = 9 21 Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trong khẳng định sau đây, khẳng định đúng? Câu 17 [3-12217d] Cho hàm số y = ln x + A xy0 = −ey − B xy0 = ey + C xy0 = ey − D xy0 = −ey + Câu 18 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A (1; 2) B [3; 4) C 2 √ ab log(mx) = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m < ∨ m > D m ≤ un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D Câu 20 [1226d] Tìm tham số thực m để phương trình Câu 22 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > Câu 23 Tính lim A B lim un = c (Với un = c số) D lim = với k > nk 2n2 − 3n6 + n4 B 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A B Câu 25 Dãy số sau có giới hạn khác 0? 1 A √ B n n cos n + sin n Câu 26 Tính lim n2 + A B Câu 27 Tính lim n+3 A B C D C +∞ D D n+1 n C sin n n C +∞ D −∞ C D Trang 2/5 Mã đề ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un = +∞ D Nếu lim un = a > lim = lim 7n2 − 2n3 + Câu 30 Tính lim 3n + 2n2 + A B C - D 3 Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B a C a D A [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S√BC) √ với mặt đáy S O = a √ a 57 2a 57 a 57 B C D a 57 A 17 19 19 0 0 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C a 57 D A 19 19 17 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C D 3a 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 3a 38 A B C D 29 29 29 29 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C a A D 2 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A a B 2a C D Câu 41 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 42 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 43 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Câu 44 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 45 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trang 4/5 Mã đề Trong hai câu A Chỉ có (II) B Cả hai câu C Chỉ có (I) D Cả hai câu sai Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B Z C Z D g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = dx = ln |x| + C, C số Z x D 0dx = C, C số B xα+1 + C, C số α+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A A 10 D B 14 15 A 16 17 C 18 A 19 C 20 21 C 22 23 C 24 D 25 D 31 A 37 B C B C D C 30 C B 34 A 36 C B 39 A 41 B 28 32 35 C 26 A B 29 33 D 12 13 A 27 C 11 D C C C B 38 D 40 D 42 C 43 D 44 B 45 D 46 B 47 49 C B 48 C 50 C ... số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A (1; 2) B [3; 4) C 2 √ ab log(mx) = có nghiệm thực log(x + 1) A m... lim n+3 A B C D C +∞ D D n+1 n C sin n n C +∞ D −∞ C D Trang 2/5 Mã đề ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 29 Trong mệnh đề... vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A a B 2a C D Câu 41