ρ∗ + δ ✱ ❊①♣r❡ss✐♦♥ ✭✶✼✮ ✐s str✐❝t❧② ❞❡❝r❡❛s✐♥❣ ✇✐t❤ εi ❢♦r ❛❧❧ i✱ ✇❤✐❝❤ ♠❡❛♥s ✸✹ Electronic copy available at: https://ssrn.com/abstract=2696126 −Ei t❤❛t ❛t t❤❡ ♦♣t✐♠✉♠ εi = − 1−ρ ,0 ✳ 1−ρ∗ ∗ • ■❢ p < ρ∗ + δ ✱ ❊①♣r❡ss✐♦♥ ✭✶✼✮ ✐s str✐❝t❧② ✐♥❝r❡❛s✐♥❣ ✇✐t❤ εi ❢♦r ❜❛♥❦s ✇✐t❤ ρi < p✱ ❛♥❞ str✐❝t❧② ❞❡❝r❡❛s✐♥❣ ✇✐t❤ εi ❢♦r ❜❛♥❦s ✇✐t❤ ρi ≥ p✳ ❚❤❡r❡❢♦r❡✱ ❛t t❤❡ ♦♣t✐♠✉♠✿ εi = Pr♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✷✳ Ei − ρ∗ − Ei , 1 + − , 1ρi ≥p ρi
ρ∗ +δ ✱ t❤❡② ✇✐❧❧ ❛❧❧ ❤♦❧❞ ③❡r♦ ❧✐q✉✐❞✐t②✳ ❍❡♥❝❡✱ t❤❡r❡ ✐s ♥♦ ❧✐q✉✐❞✐t② ❛✈❛✐❧❛❜❧❡ ❡①✲♣♦st t♦ s✉♣♣♦rt t❤✐s ♣r✐❝❡✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ❛♥ ❡q✉✐❧✐❜r✐✉♠ ✇❤❡r❡ p > ρ∗ + δ ❝❛♥♥♦t ❡①✐st✳ Pr♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✸✳ • ❲❡ st❛rt ✜rst ✇✐t❤ t❤❡ ❝❤❛r❛❝t❡r✐s❛t✐♦♥ ♦❢ t❤❡ ❡q✉✐❧✐❜r✐✉♠ ✐♥ ✇❤✐❝❤ t❤❡ ♣r✐❝❡ ✐s str✐❝t❧② ❧♦✇❡r t❤❛♥ ρ∗ + δ ✳ ❲❡ ❦♥♦✇ ❢r♦♠ ▲❡♠♠❛ ✷ t❤❛t ✐❢ ❜❛♥❦s ❡①♣❡❝t t❤❡ ♣r✐❝❡ t♦ ❜❡ str✐❝t❧② ❧♦✇❡r t❤❛♥ ρ∗ + δ ✱ t❤❡ ❜❛♥❦s✬ ♦♣t✐♠❛❧ ❧✐q✉✐❞✐t② ❤♦❧❞✐♥❣s ❛r❡ ❛s ❢♦❧❧♦✇s✿ εi = − ρ∗ − Ei Ei , 1 + − , 1ρi >p ρi ≤p − ρ∗ − ρ∗ ❚❤❡r❡❢♦r❡✱ ✇❡ ♥❡❡❞ t♦ ❞❡t❡r♠✐♥❡ ✇❤❡♥ ❛ ❜❛♥❦ i ✇✐❧❧ ❝❤♦♦s❡ t❤❡✐r ❧✐q✉✐❞✐t② ❤♦❧❞✐♥❣ s✉❝❤ t❤❛t ρi ≤ p ♦r ρi > p ❜② ❝♦♠♣❛r✐♥❣ ✐ts ❡①♣❡❝t❡❞ ♣r♦✜ts ✐♥ t❤❡ ❝❛s❡ ✐t ✐s ❧✐q✉✐❞ ❛♥❞ ✐♥ t❤❡ ❝❛s❡ ✐t ✐s ♥♦t✳ ■❢ ❜❛♥❦ i ❝❤♦♦s❡s t♦ ❜❡ ✐❧❧✐q✉✐❞✱ ✐ts ❡①♣❡❝t❡❞ ♣r♦✜t ✐s ❛s ❢♦❧❧♦✇s✿ Πilli i = N P V + Ei − (1 − α)(θyL − p) ✭❆✶✸✮ ■❢ ❜❛♥❦ i ❝❤♦♦s❡s t♦ ❜❡ ❧✐q✉✐❞✱ ✐ts ❡①♣❡❝t❡❞ ♣r♦✜t ✐s ❛s ❢♦❧❧♦✇s✿ Πilli i = Ei + (1 − α)(θyL − p) Ei p − ρ∗ ✭❆✶✹✮ ❍❡♥❝❡✱ t❤❡ ❝✉t♦✛ ❝❛♣✐t❛❧ r❛t✐♦ E ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥s✿ E + (1 − α)(θyL − p) E = N P V + E − (1 − α)(θyL − p) p − ρ∗ ✸✺ Electronic copy available at: https://ssrn.com/abstract=2696126 ✭❆✶✺✮ ✇❤✐❝❤ ✐s ❡q✉✐✈❛❧❡♥t t♦✿ E NP V + = p − ρ∗ (1 − α)(θyL − p) ✭❆✶✻✮ ◆♦t❡ t❤❛t ❛❧❧ ❜❛♥❦s ✇✐t❤ Ei ≥ E ✇✐❧❧ ❝❤♦♦s❡ t♦ ✐♥✈❡st ❛❧❧ ♦❢ t❤❡✐r ❢✉♥❞s ✐♥ t❤❡ ❧✐q✉✐❞ ❛ss❡ts✱ ✇❤✐❝❤ ✐♠♣❧✐❡s t❤❛t t❤❡ s♣❛r❡ ❧✐q✉✐❞✐t② ♦❢ ❡❛❝❤ ❜❛♥❦ i ✐s Ei ✳ ❚❤❡r❡❢♦r❡✱ t❤❡ t♦t❛❧ s♣❛r❡ ❧✐q✉✐❞✐t② ✐s ❡q✉❛❧ t♦ E Ef (E, h)dE ✳ ❙✐♥❝❡ ❛❧❧ ❜❛♥❦s ✇✐t❤ Ei < E ✇✐❧❧ ❤♦❧❞ ③❡r♦ ❧✐q✉✐❞✐t② ❛♥❞ ✇✐❧❧ s❡❧❧ ❛❧❧ ♦❢ t❤❡✐r ❧♦♥❣✲t❡r♠ ❛ss❡ts✱ ✐❢ t❤❡ ❧✐q✉✐❞✐t② s❤♦❝❦ ✐s r❡❛❧✐s❡❞✱ t❤❡ t♦t❛❧ s✉♣♣❧② ♦❢ t❤❡ ❧♦♥❣✲t❡r♠ ❛ss❡ts ✐♥ t❤❡ s❡❝♦♥❞❛r② ♠❛r❦❡t ✐s E f (E, h)dE ✳ ❍❡♥❝❡✱ t❤❡ ♠❛r❦❡t ❝❧❡❛r✐♥❣ ❝♦♥❞✐t✐♦♥ ✐♠♣❧✐❡s t❤❛t t❤❡ ❡q✉✐❧✐❜r✐✉♠ ♣r✐❝❡ ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❡q✉❛t✐♦♥✿ E Ef (E, h)dE = pe E f (E, h)dE ✭❆✶✼✮ ❚♦ s✉♠♠❛r✐s❡✱ ✐♥ t❤❡ ❡q✉✐❧✐❜r✐✉♠ ✇❤❡r❡ p < ρ∗ + δ ✱ t❤❡ ❝✉t♦✛ ❝❛♣✐t❛❧ ❧❡✈❡❧ ❛♥❞ t❤❡ ❡q✉✐❧✐❜r✐✉♠ ♣r✐❝❡ ❛r❡ ❥♦✐♥t❧② ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❡q✉❛t✐♦♥s✿ NP V E +1= ∗ p−ρ (1 − α)(θyL − p) E Ef (E, h)dE = pe f (E, h)dE ✭❆✶✽✮ ✭❆✶✾✮ E • ❲❡ ♥♦✇ ❝❤❛r❛❝t❡r✐s❡ t❤❡ ❡q✉✐❧✐❜r✐✉♠ ✐♥ ✇❤✐❝❤ t❤❡ ♣r✐❝❡ ✐s ❡q✉❛❧ t♦ ρ∗ + δ ✳ ❋r♦♠ Pr♦❣r❛♠ ℘✱ ✇❡ s❡❡ t❤❛t ❜❛♥❦s ✇✐t❤ ρi > p ✇✐❧❧ ❤♦❧❞ ③❡r♦ ❧✐q✉✐❞✐t②✱ ❛♥❞✱ ❝♦♥s❡q✉❡♥t❧②✱ ✇✐❧❧ ❤❛✈❡ t♦ s❡❧❧ ❛❧❧ ♦❢ t❤❡✐r ❧♦♥❣✲t❡r♠ ❛ss❡ts✳ ❚❤❡✐r ♣r♦✜ts ✇✐❧❧ t❤✉s ❜❡ ❡q✉❛❧✿ ∗ Πilli i = N P V + Ei − (1 − α)(θyL − ρ − δ) ✭❆✷✵✮ ❋♦r ❜❛♥❦s t❤❛t ❤❛✈❡ ρi < p✱ ✇❡ ❛❧s♦ s❡❡ t❤❛t t❤❡② ✇✐❧❧ ❜❡ ✐♥❞✐✛❡r❡♥t t♦ ❛♥② ❧✐q✉✐❞✐t② ❤♦❧❞✐♥❣s ❜❡t✇❡❡♥ max 1−ρ∗ −Ei ,0 1−ρ∗ ❛♥❞ 1✳ ❚❤❡✐r ❡①♣❡❝t❡❞ ♣r♦✜t ✐s ❛s ❢♦❧❧♦✇s✿ Πlii = Ei + Ei NP V − ρ∗ ✸✻ Electronic copy available at: https://ssrn.com/abstract=2696126 ✭❆✷✶✮ ◆♦t❡ t❤❛t t❤❡ ❝♦♥❞✐t✐♦♥ ρi > p = ρ∗ + δ ✐♠♣❧✐❡s t❤❛t D1i −ci 1−ci > ρ∗ + δ ✳ ❙✐♥❝❡ ❛ ❜❛♥❦ i t❤❛t ❤❛s ρi > p ✇✐❧❧ ❜❡ ❝❧♦s❡❞ ❛t ❞❛t❡ 1✱ D1i ✐s ❞❡t❡r♠✐♥❡❞ ❛s ❢♦❧❧♦✇s ✭❆✷✷✮ αD1i + (1 − α)p = − Ei ❚❤❡r❡❢♦r❡✱ ❝♦♥❞✐t✐♦♥ ρi > p = ρ∗ + δ ✐s ❡q✉✐✈❛❧❡♥t t♦ Ei < − ρ∗ − δ ✳ ◆♦t✐❝❡ ❛❧s♦ t❤❛t ✐❢ Ei < − ρ∗ − δ ✱ t❤❡♥ ✇❡ ❤❛✈❡ ✭❆✷✸✮ Πlii < Πilli i ✇❤✐❝❤ ♠❡❛♥s t❤❛t ❜❛♥❦s ✇✐t❤ ❝❛♣✐t❛❧ r❛t✐♦ ❧♦✇❡r t❤❛♥ − ρ∗ − δ ✇✐❧❧ ✐♥❞❡❡❞ ♣r❡❢❡r t♦ ❤♦❧❞ ③❡r♦ ❧✐q✉✐❞✐t②✳ ❚❤❡② ✇✐❧❧ t❤✉s ❜❡ ❝❧♦s❡❞ ❛t ❞❛t❡ ❢♦❧❧♦✇✐♥❣ t❤❡ r❡❛❧✐s❛t✐♦♥ ♦❢ t❤❡ ❧✐q✉✐❞✐t② s❤♦❝❦✳ Pr♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✹✳ • ❋✐rst✱ ✇❡ ✇✐❧❧ s❤♦✇ t❤❛t t❤❡ s②st❡♠ ♦❢ t❤❡ t✇♦ ❊q✉❛t✐♦♥s ✭✶✾✮ ✲ ✭✷✵✮ ❤❛s ✉♥✐q✉❡ s♦❧✉t✐♦♥s✳ ■♥❞❡❡❞✱ ❢r♦♠ ❊q✉❛t✐♦♥ ✭✷✵✮✱ ✇❡ ❝❛♥ ❞❡r✐✈❡ pe ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ E ❛♥❞ h ❛s ❢♦❧❧♦✇s✿ e p = Ef (E, h)dE E E f (E, h)dE ✭❆✷✹✮ ❈♦♠♣✉t✐♥❣ t❤❡ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡ ♦❢ pe ✇✐t❤ r❡s♣❡❝t t♦ E ✱ ✇❡ ❤❛✈❡✿ f (E, h) E ∂pe =− ∂E E f (E, h)dE + E E Ef (E, h)dE ρ∗ ❢♦r E ≤ E ≤ E ✱ ✇❡ ❤❛✈❡✿ ∂g(E) > ∀E ≤ E ≤ E ∂E and lim g(E) = +∞ E−→E ✭❆✸✶✮ ❍❡♥❝❡✱ lim − G(E) = +∞ and E−→E lim + G(E) = −∞ ✭❆✸✷✮ E−→E ▼♦r❡♦✈❡r✱ ✐t ✐s ❡❛s② t♦ ❝❤❡❝❦ t❤❛t G(E) ✐s ❛ ♠♦♥♦t♦♥✐❝❛❧❧② ✐♥❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥ ♦❢ E ❢♦r E ≤ E ≤ E ✳ ❚❤✐s✱ t♦❣❡t❤❡r ✇✐t❤ ❘❡s✉❧t ✭❆✸✷✮✱ ✐♠♣❧✐❡s t❤❛t ❊q✉❛t✐♦♥ ✭❆✷✾✮ ❤❛s ✉♥✐q✉❡ s♦❧✉t✐♦♥ E(h)✱ s❛t✐s❢②✐♥❣ E ≤ E ≤ E ✳ • ◆♦✇✱ ✇❡ ✇✐❧❧ s❤♦✇ t❤❛t E(h) ✐s ❛ ❞❡❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥ ♦❢ h✳ ✸✽ Electronic copy available at: https://ssrn.com/abstract=2696126 ❋r♦♠ ❊q✉❛t✐♦♥ ✭✶✾✮✱ ✉s✐♥❣ ✐♠♣❧✐❝✐t ❞✐✛❡r❡♥t✐❛t✐♦♥✱ ✇❡ ❝❛♥ ❝♦♠♣✉t❡ t❤❡ t♦t❛❧ ❞❡r✐✈❛✲ t✐✈❡ ♦❢ E(h) ✇✐t❤ r❡s♣❡❝t t♦ h ❛s ❢♦❧❧♦✇s✿ e e − ∂p E(1 − α) + ∂p (1 − α)(θyL − pe ) dE ∂h ∂h =− e e p dh (1 − α)(θyL − pe ) − ∂h E(1 − α) + ∂p (1 − α)(θyL − p) ✭❆✸✸✮ ∂E ❆❢t❡r s♦♠❡ ❛rr❛♥❣❡♠❡♥ts✱ ✇❡ ♦❜t❛✐♥✿ ∂pe N P V − (1 − α)θyL + (1 − α)(E + 2pe − ρ∗ ) dE = e dh ∂h (1 − α)(θyL − pe ) − ∂p (N P V − (1 − α)θyL + (1 − α)(E + 2pe − ρ∗ )) ∂E ❙✐♥❝❡ pe ≥ ρ∗ ❛♥❞ s✐❣♥ ❛s ∂pe ∂h ∂pe ∂E ✭❆✸✹✮ ≤ 0✱ ❢r♦♠ ❊①♣r❡ss✐♦♥ ✭❆✸✹✮✱ ✇❡ s❡❡ t❤❛t dE dh ❤❛s t❤❡ s❛♠❡ ✳ ❙✐♥❝❡ h ♠❡❛s✉r❡s t❤❡ ♠❛ss ♦♥ t❤❡ ❧❡❢t s✐❞❡ ♦❢ t❤❡ ❜❛♥❦s✬ ❧❡✈❡r❛❣❡ ❞✐str✐❜✉t✐♦♥✱ ✇❡ ❤❛✈❡ ∂pe ∂h ❛s ♥❡❣❛t✐✈❡✳ ❚❤❡r❡❢♦r❡✱ E(h) ✐s ❞❡❝r❡❛s✐♥❣ ✇✐t❤ h✳ • ❲❡ s❤♦✇ t❤❛t p E(h), h ✐s ❞❡❝r❡❛s✐♥❣ ✇✐t❤ r❡s♣❡❝t t♦ ❜♦t❤ E ❛♥❞ h ❆s s❤♦✇♥ ❛❜♦✈❡✱ t❤❡ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡ ♦❢ pe ✇✐t❤ r❡s♣❡❝t t♦ E ✐s ♥❡❣❛t✐✈❡✱ ✇❤✐❝❤ ♠❡❛♥s t❤❛t p E(h), h ✐s ❞❡❝r❡❛s✐♥❣ ✇✐t❤ E ✳ ◆♦✇✱ ✇❡ ❝❛♥ ❝♦♠♣✉t❡ t❤❡ t♦t❛❧ ❞❡r✐✈❛t✐✈❡ ♦❢ pe ✇✐t❤ r❡s♣❡❝t t♦ h ❛s ❢♦❧❧♦✇s✿ ∂pe dE ∂pe dpe = + dh ∂h ∂E dh ✭❆✸✺✮ ❯s✐♥❣ ❊①♣r❡ss✐♦♥ ✭❆✸✹✮✱ ✇❡ ♦❜t❛✐♥✿ dpe ∂pe = dh ∂h (1 − α)(θyL − pe ) − ❍❡♥❝❡✱ dpe dh ∂pe ∂E ❤❛s t❤❡ s❛♠❡ s✐❣♥ ❛s (1 − α)(θyL − pe ) N P V − (1 − α)θyL + (1 − α)(E + 2pe − ρ∗ ) ∂pe ∂h ✭❆✸✻✮ ✱ ✇❤✐❝❤ ♠❡❛♥s t❤❛t p E(h), h ✐s ❞❡❝r❡❛s✐♥❣ ✇✐t❤ h✳ • P❛rt ✭✐✐✮ ♦❢ Pr♦♣♦s✐t✐♦♥ ✹ ✐s t❤❡ ❞✐r❡❝t ❝♦♥s❡q✉❡♥❝❡ ♦❢ t❤❡ ❢❛❝t t❤❛t p E(h), h ✐s ❞❡❝r❡❛s✐♥❣ ✇✐t❤ h✳ ✸✾ Electronic copy available at: https://ssrn.com/abstract=2696126 ❘❡❢❡r❡♥❝❡s ❬✶❪ ❆❝❤❛r②❛✱ ❱✳❱✳✱ ❍✳❙✳ ❙❤✐♥ ❛♥❞ ❚✳ ❨♦r✉❧♠❛③❡r ✭✷✵✶✶✮✿ ✧❈r✐s✐s ❘❡s♦❧✉t✐♦♥ ❛♥❞ ❇❛♥❦ ▲✐q✉✐❞✐t②✧✱ ❘❡✈✐❡✇ ♦❢ ❋✐♥❛♥❝✐❛❧ ❙t✉❞✐❡s✱ ✷✹✱ ✷✶✻✻ ✲ ✷✷✵✺✳ ❬✷❪ ❆❝❤❛r②❛✱ ❱✳ ❱✳ ❛♥❞ ❙✳ ❱✐s✇❛♥❛t❤❛♥ ✭✷✵✶✶✮✿ ✧▲❡✈❡r❛❣❡✱ ▼♦r❛❧ ❍❛③❛r❞✱ ❛♥❞ ▲✐q✉✐❞✲ ✐t②✧✱ ❏♦✉r♥❛❧ ♦❢ ❋✐♥❛♥❝❡✱ ✻✻✱ ✾✾ ✲ ✶✸✽✳ ❬✸❪ ❆❝❤❛r②❛✱ ❱✳❱✳✱ ❆✳▼✳ ■②❡r ❛♥❞ ❘✳ ❑✳ ❙✉♥❞❛r❛♠ ✭✷✵✶✺✮✿ ✧❘✐s❦✲❙❤❛r✐♥❣ ❛♥❞ t❤❡ ❈r❡✲ ❛t✐♦♥ ♦❢ ❙②st❡♠✐❝ ❘✐s❦✧✱ ❯♥♣✉❜❧✐s❤❡❞ ❲♦r❦✐♥❣ P❛♣❡r✳ ❬✹❪ ❆❧❧❡♥✱ ❋✳ ❛♥❞ ❉✳ ●❛❧❡ ✭✶✾✾✹✮✿ ✧▲✐♠✐t❡❞ ▼❛r❦❡t P❛rt✐❝✐♣❛t✐♦♥ ❛♥❞ ❱♦❧❛t✐❧✐t② ♦❢ ❆ss❡t Pr✐❝❡s✧✱ ❆♠❡r✐❝❛❧ ❊❝♦♥♦♠✐❝ ❘❡✈✐❡✇✱ ✽✹✱ ✾✸✸ ✲ ✾✺✺✳ ❬✺❪ ❆❧❧❡♥✱ ❋✳ ❛♥❞ ❉✳ ●❛❧❡ ✭✷✵✵✹✮✿ ✧❋✐♥❛♥❝✐❛❧ ❋r❛❣✐❧✐t②✱ ▲✐q✉✐❞✐t②✱ ❛♥❞ ❆ss❡t Pr✐❝❡s✧✱ ❏♦✉r♥❛❧ ♦❢ ❊✉r♦♣❡❛♥ ❊❝♦♥♦♠✐❝ ❆ss♦❝✐❛t✐♦♥✱ ✷✱ ✶✵✶✺ ✲ ✶✵✹✽✳ ❬✻❪ ❆❧❧❡♥✱ ❋✳ ❛♥❞ ❉✳ ●❛❧❡ ✭✷✵✵✺✮✿ ✧❋r♦♠ ❈❛s❤✲■♥✲❚❤❡✲▼❛r❦❡t✲Pr✐❝✐♥❣ t♦ ❋✐♥❛♥❝✐❛❧ ❋r❛❣✐❧✐t②✧✱ ❏♦✉r♥❛❧ ♦❢ ❊✉r♦♣❡❛♥ ❊❝♦♥♦♠✐❝ ❆ss♦❝✐❛t✐♦♥✱ ✸✱ ✺✸✺ ✲ ✺✹✻✳ ❬✼❪ ❇♦❧t♦♥✱ P✳✱ ❚✳ ❙❛♥t♦s ❛♥❞ ❏✳❆✳ ❙❝❤❡✐♥❦♠❛♥ ✭✷✵✶✶✮✿ ✧❖✉ts✐❞❡ ❛♥❞ ■♥s✐❞❡ ▲✐q✉✐❞✐t②✧✱ ◗✉❛rt❡r❧② ❏♦✉r♥❛❧ ♦❢ ❊❝♦♥♦♠✐❝s✱ ✶✷✻✱ ✷✺✾ ✲ ✸✷✶✳ ❬✽❪ ❇❡s❛♥❦♦✱ ❉✳ ❛♥❞ ●✳ ❑❛♥❛t❛s ✭✶✾✾✻✮✿ ✧❚❤❡ ❘❡❣✉❧❛t✐♦♥ ♦❢ ❇❛♥❦ ❈❛♣✐t❛❧✿ ❉♦ ❈❛♣✐t❛❧ ❙t❛♥❞❛r❞s Pr♦♠♦t❡ ❇❛♥❦ ❙❛❢❡t②❄✧✱ ❏♦✉r♥❛❧ ♦❢ ❋✐♥❛♥❝✐❛❧ ■♥t❡r♠❡❞✐❛t✐♦♥✱ ✺✱ ✶✻✵ ✲ ✶✽✸✳ ❬✾❪ ❇❧✉♠✱ ❏✳ ✭✶✾✾✾✮✿ ✧❉♦ ❈❛♣✐t❛❧ ❆❞❡q✉❛❝② ❘❡q✉✐r❡♠❡♥ts ❘❡❞✉❝❡ ❘✐s❦s ✐♥ ❇❛♥❦✐♥❣✧✱ ❏♦✉r♥❛❧ ♦❢ ❇❛♥❦✐♥❣ ❛♥❞ ❋✐♥❛♥❝❡✱ ✷✸✱ ✼✺✺ ✲ ✼✼✶✳ ❬✶✵❪ ❈❛❧♦♠✐r✐s✱ ❈✳ ❲✳✱ ❋✳ ❍❡✐❞❡r ❛♥❞ ▼✳ ❍♦❡r♦✈❛ ✭✷✵✶✹✮✿ ✧❆ ❚❤❡♦r② ♦❢ ❇❛♥❦ ▲✐q✉✐❞✐t② ❘❡q✉✐r❡♠❡♥ts✧✱ ❈♦❧✉♠❜✐❛ ❇✉s✐♥❡ss ❙❝❤♦♦❧ ❘❡s❡❛r❝❤ P❛♣❡r ◆♦ ✶✹✲✸✾✳ ❬✶✶❪ ❋r❡✐①❛s✱ ❳✳ ❛♥❞ ❏✲❈✳ ❘♦❝❤❡t ✭✷✵✵✽✮✿ ✧▼✐❝r♦❡❝♦♥♦♠✐❝s ♦❢ ❇❛♥❦✐♥❣✧✱ ▼■❚ Pr❡ss✳ ❬✶✷❪ ❋r❡✐①❛s✱ ❳✳✱ ❆✳ ▼❛rt✐♥ ❛♥❞ ❉✳ ❙❦❡✐❡ ✭✷✵✶✶✮✿ ✧❇❛♥❦ ❧✐q✉✐❞✐t②✱ ■♥t❡r❜❛♥❦ ▼❛r❦❡ts✱ ❛♥❞ ▼♦♥❡t❛r② P♦❧✐❝②✧✱ ❘❡✈✐❡✇ ♦❢ ❋✐♥❛♥❝✐❛❧ ❙t✉❞✐❡s✱ ✷✹✱ ✷✻✺✻ ✲ ✷✻✾✷✳ ✹✵ Electronic copy available at: https://ssrn.com/abstract=2696126 ❬✶✸❪ ●❛❧❡✱ ❉✳ ❛♥❞ ❚✳ ❨♦r✉❧♠❛③❡r ✭✷✵✶✸✮✿ ✧▲✐q✉✐❞✐t② ❍♦❛r❞✐♥❣✧✱ ❚❤❡♦r❡t✐❝❛❧ ❊❝♦♥♦♠✐❝s✱ ✽✱ ✷✾✶ ✲ ✸✷✹✳ ❬✶✹❪ ❍❡✐❞❡r✱ ❋✳ ❛♥❞ ▼✳ ❍♦❡r♦✈❛ ❛♥❞ ❈✳ ❍♦❧t❤❛✉s❡♥ ✭✷✵✶✺✮✿ ✧▲✐q✉✐❞✐t② ❍♦❛r❞✐♥❣ ❛♥❞ ■♥t❡r❜❛♥❦ ▼❛r❦❡t ❙♣r❡❛❞s✿ ❚❤❡ ❘♦❧❡ ♦❢ ❈♦✉♥t❡r♣❛rt② ❘✐s❦✧✱ ❏♦✉r♥❛❧ ♦❢ ❋✐♥❛♥❝✐❛❧ ❊❝♦♥♦♠✐❝s✱ ✶✶✽✱ ✸✸✻ ✲ ✸✺✹✳ ❬✶✺❪ ❍♦❧♠strö♠✱ ❇✳ ❛♥❞ ❏✳ ❚✐r♦❧❡ ✭✶✾✾✽✮✿ ✧Pr✐✈❛t❡ ❛♥❞ P✉❜❧✐❝ ❙✉♣♣❧② ♦❢ ▲✐q✉✐❞✐t②✧✱ ❏♦✉r♥❛❧ ♦❢ P♦❧✐t✐❝❛❧ ❊❝♦♥♦♠②✱ ✶✵✻✱ ✶ ✲ ✹✵✳ ❬✶✻❪ ❑❛s❤②❛♣✱ ❆✳❑✳✱ ❉✳P✳ ❚s♦♠♦❝♦s ❛♥❞ ❆✳ P✳ ❱❛r❞♦✉❧❛❦✐s ✭✷✵✶✼✮✿ ✧❖♣t✐♠❛❧ ❇❛♥❦ ❘❡❣✲ ✉❧❛t✐♦♥ ✐♥ t❤❡ Pr❡s❡♥❝❡ ♦❢ ❈r❡❞✐t ❛♥❞ ❘✉♥ ❘✐s❦✧✱ ❙❛✐❞ ❇✉s✐♥❡ss ❙❝❤♦♦❧ ❘P ✷✵✶✼✲✶✼✳ ❬✶✼❪ ▼❛❧❤❡r❜❡✱ ❋✳ ✭✷✵✶✹✮✿ ✧❙❡❧❢✲❋✉❧✜❧❧✐♥❣ ▲✐q✉✐❞✐t② ❉r②✲❯♣s✧✱ ❏♦✉r♥❛❧ ♦❢ ❋✐♥❛♥❝❡✱ ✻✾✱ ✾✹✼ ✲ ✾✼✵✳ ❬✶✽❪ ❘❡♣✉❧❧♦✱ ❘✳ ✭✷✵✵✹✮✿ ✧❈❛♣✐t❛❧ ❘❡q✉✐r❡♠❡♥ts✱ ▼❛r❦❡t P♦✇❡r✱ ❛♥❞ ❘✐s❦✲❚❛❦✐♥❣ ✐♥ ❇❛♥❦✐♥❣✧✱ ❏♦✉r♥❛❧ ♦❢ ❋✐♥❛♥❝✐❛❧ ■♥t❡r♠❡❞✐❛t✐♦♥✱ ✶✸✱ ✶✺✻ ✲ ✶✽✷✳ ❬✶✾❪ ❘♦❝❤❡t✱ ❏✲❈✳ ✭✶✾✾✷✮✿ ✧❈❛♣✐t❛❧ ❘❡q✉✐r❡♠❡♥ts ❛♥❞ ❚❤❡ ❇❡❤❛✈✐♦r ♦❢ ❈♦♠♠❡r❝✐❛❧ ❇❛♥❦s✧✱ ❊✉r♦♣❡❛♥ ❊❝♦♥♦♠✐❝ ❘❡✈✐❡✇✱ ✸✻✱ ✶✶✸✼ ✲ ✶✶✼✽✳ ❬✷✵❪ ❚✐r♦❧❡✱ ❏✳ ✭✷✵✶✵✮✿ ✧■❧❧✐q✉✐❞✐t② ❛♥❞ ❆❧❧ ✐ts ❋r✐❡♥❞s✧✱ ❇■❙ ❲♦r❦✐♥❣ P❛♣❡rs ◆♦ ✸✵✸✳ ❬✷✶❪ ❱❛♥❍♦♦s❡✱ ❉✳ ✭✷✵✵✼✮✿ ✧❚❤❡♦r✐❡s ♦❢ ❇❛♥❦ ❇❡❤❛✈✐♦r ✉♥❞❡r ❈❛♣✐t❛❧ ❘❡❣✉❧❛t✐♦♥✧✱ ❏♦✉r✲ ♥❛❧ ♦❢ ❇❛♥❦✐♥❣ ❛♥❞ ❋✐♥❛♥❝❡✱ ✸✶✱ ✸✻✽✵ ✲ ✸✻✾✼✳ ❬✷✷❪ ❲❛❧t❤❡r✱ ❆✳ ✭✷✵✶✻✮✿ ✧❏♦✐♥t❧② ❖♣t✐♠❛❧ ❘❡❣✉❧❛t✐♦♥ ♦❢ ❇❛♥❦ ❈❛♣✐t❛❧ ❛♥❞ ▲✐q✉✐❞✐t②✧✱ ❏♦✉r♥❛❧ ♦❢ ▼♦♥❡②✱ ❈r❡❞✐t ❛♥❞ ❇❛♥❦✐♥❣✱ ✹✽✱ ✹✶✺ ✲ ✹✹✽✳ ✹✶ Electronic copy available at: https://ssrn.com/abstract=2696126 ... ∂E ✭❆✸✵✮ < ❛♥❞ pe > ρ∗ ❢♦r E ≤ E ≤ E ✱ ✇❡ ❤❛✈❡✿ ∂g(E) > ∀E ≤ E ≤ E ∂E and lim g(E) = +∞ E−→E ✭❆✸✶✮ ❍❡♥❝❡✱ lim − G(E) = +∞ and E−→E lim + G(E) = −∞ ✭❆✸✷✮ E−→E ▼♦r❡♦✈❡r✱ ✐t ✐s ❡❛s② t♦ ❝❤❡❝❦ t❤❛t... ❧✐q✉✐❞✐t② ❤♦❧❞✐♥❣s ♦❢ ❜❛♥❦ i ✐s✿ ▼❛① Πi ci ∈[0,1] ✭❆✷✮ s✉❜❥❡❝t t♦ αD1i + (1 − α)D1i 1ρi ≤ρ∗ + (1 − α)min D1i , (1 − ci )βi p + (1 − ci ) (1 − βi )ρ∗ + ci ) 1ρi >ρ∗ = − Ei ✭❆✸✮ D1i − ci = ρi − ci ✸✸... ✭❆✷✺✮ f (E, h)dE ❍❡♥❝❡✱ pe ✐s ❛ ❞❡❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥ ♦❢ E ✳ ❉❡✜♥❡ E ❛♥❞ E ❛s ❢♦❧❧♦✇s✿ pe E = θyL and pe E = ρ∗ ✭❆✷✻✮ ❙✐♥❝❡ pe ✐s ❛ ❞❡❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥ ♦❢ E ✱ ✇❡ ❤❛✈❡ E < E ✳ ●✐✈❡♥ t❤❛t t❤❡ ♥❛t✉r❛❧